

XC-80 environmental compensator

www.renishaw.com/xc80

Contents

Legal information
Introduction
Wavelength compensation 5
Material thermal expansion compensation
End panel
XC compensator connection and configuration
Environmental sensors 6
Sensor symbols
LEDs
Sensor LEDs 8
Status LEDs 8
XC compensator calibration
Wavelength compensation 10
Positioning of air sensors 11
Positioning of air temperature sensor
Air pressure and relative humidity sensors

Material thermal expansion compensation	12
Material thermal expansion coefficients	12
Positioning of material sensor	14
Estimate accuracy of the machine if it was operated in 20 °C environment	14
Calibration in accordance with National and International Standards	15
Estimate accuracy of machine feedback system if it was at 20 $^\circ\text{C.}$.	16
Manufacture of parts which must be accurate at 20 °C	16
Automatic environmental compensation	17
XC compensator update cycle	17
Fixed material compensation	18
Specifications	19
Introduction.	19
Weights and dimensions	20
Part numbers	20

Legal information

Safety

Before using the XL or XM laser systems, consult the appropriate laser safety information booklet: For the XL Laser see Renishaw part no. M-9908-0363. For the XM Laser see Renishaw part no. M-9921-0202.

EU and UKCA declaration of conformity

Renishaw plc hereby declares that XC-80 Environmental Compensator is in compliance with the essential requirements and other relevant provisions of:

- the applicable EU directives
- the relevant statutory instruments under UK law

The full text of the declaration of conformity is available at: www.renishaw.com/XLCE

Disposal of waste electrical and electronic equipment

The use of this symbol on Renishaw products and/or accompanying documentation indicates that the product should not be mixed with general household waste upon disposal. It is the responsibility of the end user to dispose of this product at a designated collection point for waste electrical and electronic equipment (WEEE) to enable reuse or recycling. Correct disposal of this product will help to save valuable resources and prevent potential negative effects on the environment. For more information, contact your local waste disposal service or Renishaw distributor.

USA and Canada regulations

FCC Compliance Statement

47 CFR Section 15.19

This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference, and
- 2. This device must accept any interference received, including interference that may cause undesired operation.

47 CFR Section 15.21

The user is cautioned that any changes or modifications not expressly approved by Renishaw plc or authorised representative could void the user's authority to operate the equipment.

47 CFR Section 15.27

This unit was tested with shielded cables on the peripheral devices. Shielded cables must be used with the unit to ensure compliance.

47 CFR Section 15.105

This equipment has been tested and found to comply withthe limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at their own expense.

JK

RENISHAW apply innovation[™]

Canada – ICES

This ISM device complies with CAN ICES-003(A)/ NMB-003(A).

Cet appareil ISM est conforme à la norme ICES-003(A)/ NMB-003(A) du CAN.

Packaging material information

Packaging component	Material	94/62/EC code	94/62/EC number
Outer box	Cardboard - 70% recycled content	PAP	20
Inner box	Cardboard – 70% recycled content	PAP	20
Inserts	Polyurethane	PU	7
Bags	Low density polythylene	LDPE	4

REACH regulation

Information required by Article 33(1) of Regulation (EC) No 1907/2006 ("REACH") relating to products containing substances of very high concern (SVHCs) is available at: **www.renishaw.com/REACH**

China RoHS

For more information on China RoHS, visit: www.renishaw.com/calcompliance

Introduction

The XC compensator is key to your laser system's measurement accuracy. By very accurately and precisely measuring environmental conditions, it compensates the wavelength of the laser beam for variations in air temperature, air pressure and relative humidity; virtually eliminating any measurement errors resulting from these variations.

Wavelength compensation

The sensor readings from the XC compensator are used to compensate the laser readings in linear measurement only. If compensation is not performed, variations in the refractive index of air can lead to significant measurement errors. Although it is possible to manually enter the environmental conditions (using hand-held instruments, for example), the benefit of using the XC compensator is that compensation is performed accurately and is automatically updated every 7 seconds.

Material thermal expansion compensation

The XC compensator can also accept inputs from up to three material sensors, which measure the temperature of the machine or material under test. Provided the appropriate material thermal expansion coefficient has been entered into CARTO software, measurements can be normalised to a machine (material) temperature of 20 °C.

Environmental compensation can be performed in three ways:

- Automatically updated environmental compensation with XC compensator.
- Manually updated environmental compensation with XC compensator.
- Compensation using manually entered data with no XC compensator.

A full XC compensator specification is given in the **specifications section**.

The XC compensator is supplied as part of a kit which includes a USB cable, one air temperature sensor and one material temperature sensor.

End panel

The end panel of the XC compensator includes the features shown below:

RENISHAW

apply innovation[™]

XC compensator connection and configuration

On the end panel of the XC compensator is a USB socket, which is used to connect the XC compensator to a PC via a USB cable (supplied with the XC compensator kit). This enables communication between the XC compensator and the PC and also provides power to the XC compensator and sensors.

NOTE: Install CARTO software before connecting the XC compensator to the PC. Software installation will ensure that the PC is correctly configured.

Environmental sensors

The air pressure and relative humidity sensors are contained within the body of the XC compensator. In order for the XC compensator to be accurate to within the quoted **specification**, it should be used with the long axis in a horizontal orientation as shown. Do not obstruct the relative humidity sensor on the back cover. Failure to follow the guidelines may produce a small error in the air pressure readings, reducing the accuracy of compensated measurement readings.

NOTE: Relative humidity is only displayed in the software when the air temperature sensor is connected to the XC compensator.

For machines with long axes, up to three material temperature sensors may be connected to the XC compensator. Additional material temperature sensor kits may be obtained by contacting your local Renishaw office.

The air temperature and material

items and are supplied together with

standard with each XC compensator.

temperature sensors shown are separate

MA[1]2]3

The air and material temperature sensors are supplied with 5 m (16.5 ft) cables. These may be combined as required up to a maximum cable length of 60 m; the sensors can be positioned at specific locations on the machine being measured. Additional and replacement sensors and cables may be obtained by contacting your local Renishaw office.

The cables are supplied with removable naming tags to easily identify which cable is connected to which sensor. The cables must be stored attached to their sensors; provision is made for this in the system case.

The temperature sensors contain magnets for attachment to steel or cast iron surfaces, with a through hole for a screw-down attachment if required.

The air and material temperature sensors will only operate if connected to the correct sockets on the XC compensator. Symbols which correspond to the different types of sensor are marked on the side of the XC compensator. The air temperature sensor must be connected to the socket marked with the air temperature symbol shown below. Material temperature sensors can be connected to any socket marked with a material temperature symbol.

Sensor symbols

The air and material temperature sensor symbols are also marked on the side of the sensors themselves.

NOTE: There are no sockets for air pressure and relative humidity, as these sensors are built into the XC compensator body.

LEDs

Sensor LEDs

Located on the side of the XC compensator beneath the sensor symbols are six sensor LEDs, corresponding to the air pressure, relative humidity, air temperature and three material temperature sensors. The colour of the LED denotes when a reading is being taken from the sensor, and subsequently the validity of this reading.

The XC compensator interrogates each sensor in turn for 7 seconds, on a continuous cycle. As each sensor is interrogated, the corresponding LED turns amber. On receipt of a valid reading from the sensor, the LED turns green. If the sensor is not connected or it has a fault, the LED turns red. The values used for wavelength compensation are updated after each sensor reading (every 7 seconds).

Status LEDs

On the end panel of the XC compensator is a status LED. This LED turns red when the power is applied to the unit (when it is connected to the computer via a USB cable) and turns green when it is ready to start measuring.

XC compensator calibration

To maintain the Renishaw calibration system within its specified accuracy, we advise that the XC compensator and its sensors are calibrated annually. More frequent calibration is advised for units used in extreme environmental conditions, or where damage is suspected. The requirements of your quality assurance programme or national/local regulations may also dictate more frequent recalibration. On the end panel of the XC compensator is a space in which to indicate the recalibration due date.

CAUTION: The XC compensator and sensors must not be subjected to excessive shock, vibration or extremes of temperature, pressure or moisture during storage, transportation or use (**see specifications on page 18**); any of these factors could invalidate calibration.

The uncertainty of calibration calculations have been carried out according to the European co-operation for Accreditation document EA-4/02.

All calibrations are included within the scope of Renishaw's EN ISO 9001:2000 quality assurance system. The system is audited and certified by a UKAS-accredited agency. UKAS accreditation is recognised in many countries world-wide by the relevant national body in that country.

For details of the calibration procedure., refer to the calibration certificates supplied with your system, or visit **www.renishaw.com/certificates**

The errors and uncertainties associated with the normalisation of readings to a material temperature of 20 °C are not included in the system accuracy. These errors and uncertainties depend on the material temperature sensor being within specification (as evidenced by a recent Renishaw calibration certificate), the accuracy of the value of the expansion coefficient entered into the calibration software, the temperature differential from 20 °C, and the correct placement of the sensors.

Renishaw offers a full recalibration and repair service for XC environmental compensation units and their sensors at its UK factory. Comparative XL laser system recalibrations are available in Renishaw's USA, Germany and China subsidiaries. For more information, contact to your local Renishaw office or visit **www.renishaw.com**.

System	Operation
Compensation	Specifications

Wavelength compensation

The accuracy of linear positional measurements depends on the accuracy to which the wavelength of the laser beam is known. This is determined by the quality of the laser stabilisation and ambient environmental parameters. In particular, the values of air temperature, air pressure and relative humidity will affect the wavelength (in air) of the laser beam.

If the variation in wavelength is not compensated for, linear laser measurement errors can reach 50 ppm. Even in a temperature-controlled room, the variation in day-to-day atmospheric pressure can cause wavelength changes of over 20 ppm. As a guide, an error of approximately 1 ppm will be incurred for each of the following changes in the environmental conditions:

Air temperature	1 °C
Air pressure	3.3 mbar (0.098 in Hg)
Relative humidity (at 20 °C)	50%
Relative humidity (at 40 °C)	30%

NOTE: These values are worst-case, and they are not entirely independent of the values of the other parameters.

These errors can be reduced by using an XC compensator environmental compensation unit.

The XC compensator measures the air temperature, pressure and humidity, then calculates the air's refractive index (and hence the laser wavelength) using the Edlen equation. The laser read-out is then automatically adjusted to compensate for any variations in the laser's wavelength. The advantage of an automatic system is that no user intervention is required and that compensation is updated frequently.

Wavelength compensation only applies to linear measurements. For other measurements (for example; angle, flatness, straightness), environmental influences are far less significant, as environmental changes affect both the measurement beam and the reference beam to a similar degree.

System	Operation
Compensation	Specifications

RENISHAW apply innovation[™]

Positioning of air sensors

Positioning of air temperature sensor

CAUTION: To ensure thermal stabilisation, the air temperature sensor should be in the measurement environment for up to 15 minutes before starting measurement.

The air temperature sensor must be placed as close as possible to the laser beam's measurement path and about halfway along the axis of travel. Avoid placing the sensors close to localised heat sources, for example motors, or in cold draughts.

When measuring long axes, check for the presence of air temperature gradients. If the air temperature changes by more than 1 °C along the axis, use a fan to circulate the air. This is particularly relevant on long vertical axes where air temperature gradients are more likely. Avoid routing sensor signal leads close to sources of major electrical interference such as high power or linear motors.

For ease of mounting, the air temperature sensors have a through hole to enable them to be bolted to a surface.

Air pressure and relative humidity sensors

The pressure and humidity sensors are mounted within the XC compensator environmental compensation unit. In general, it is not necessary to measure air pressure or relative humidity in the immediate vicinity of the beam path. This is because large variations in pressure and humidity are required to give a significant error in measurement and there should be no significant variation in either, across the work area. However, the relative humidity sensor should be positioned away from sources of heat or draught.

It is important to ensure the humidity sensor is not obstructed when mounting.

When calibrating vertical axes over 10 m long, it is also recommended to place the pressure sensor halfway up the axis of travel.

Material thermal expansion compensation

The international reference temperature used by the calibration community is 20 °C and CMMs and machine tools are normally calibrated with reference to this temperature. As most machines expand or contract with temperature, a normal factory environment where precise machine temperature cannot be guaranteed could lead to calibration errors.

To avoid this calibration error, the linear measurement software incorporates a mathematical correction called thermal expansion compensation or 'normalisation' which is applied to the linear laser readings. The software normalises measurements using the coefficient of expansion, which must be entered manually, and a mean machine temperature measured using the XC compensator. The correction estimates the laser calibration results that would have been obtained if the machine calibration had been performed at precisely 20 °C.

Material thermal expansion coefficients

The amount that most materials expand or contract with changing temperature is very small. For this reason, the thermal expansion coefficient is specified in parts per million per degree C (ppm/°C). These coefficients specify the amount that the material will expand or contract for every degree rise or fall in material temperature. For example, a coefficient of thermal expansion of 11 ppm/°C means that for every 1 °C rise in material temperature, there will be a material expansion of 11 ppm, which is equivalent to 11 micrometres per metre of material or 11 microinches (0.000011 in) per inch of material.

Incorrect compensation for material thermal expansion is one of the primary sources of error in laser linear distance measurements in non-temperature-controlled environments. The expansion coefficients of common engineering materials are relatively large compared to the coefficients associated with wavelength compensation errors and laser beam alignment errors.

The normalised measurement will have an error relating to the measurement accuracy of the material temperature sensor. The size of this error depends on the thermal expansion coefficient of the machine under test. The material temperature sensor has an accuracy of ± 0.1 °C, so if the machine under test has a thermal expansion coefficient of 10 ppm/°C, the error in the normalisation of the measurement would be ± 1 ppm. This is in addition to the system measurement accuracy (± 0.5 ppm) when using the XC compensator environmental compensation unit.

However, since the two errors are uncorrelated, their combined effect is the square root of the sum of their squares and not their arithmetic sum. Thus, for the above example, the normalised measurement accuracy will be ± 1.2 ppm for the laser and XC compensator systems.

Additional measurement errors will occur if an incorrect thermal expansion coefficient is entered into the software. Since the values of the thermal expansion coefficients of different machines can vary by 10 ppm/°C or more, care should be taken to ensure that the correct values are entered. If necessary, seek the advice of the machine's manufacturer.

System	Operation
Compensation	Specifications

The expansion coefficient of the machine's feedback system is normally entered into the software, unless you are estimating the accuracy of machined parts when returned to 20 °C. The table below gives typical expansion coefficients for different materials used in the construction of machines and their position feedback systems.

NOTE: Since material expansion coefficients can vary with material composition and treatment, these values are for guidance only and should only be used in the absence of manufacturer's data.

Material	Application	Expansion coefficient ppm/°C
Iron/steel	Machine structural elements, rack and pinion drives, ballscrews	11.7
Aluminium alloy	Lightweight CMM machine structures	22
Glass	Glass scale linear encoders	8
Granite	Machine structures and tables	8
Concrete	Machine foundations	11
Invar	Low expansion encoders/structures	< 2
Thermally stable glass	Zero expansion encoders/structures	< 0.2

When identifying the expansion coefficient, be particularly careful where there are two materials with different coefficients fixed together. For example, in the case of a rack and pinion feedback system, the expansion coefficient may be closer to the cast-iron rail to which the rack is fixed. In the case of large gantry machines with floor-mounted rails, the expansion coefficient of the rail may be reduced by the restraining action of the concrete foundations. Also, many modern scales are composed of a number of different materials; for example, a glass scale may be bonded to an aluminium spar which is mounted in turn, on a cast-iron machine member. In such cases, selection of the appropriate coefficient can be difficult. Seek the advice of the manufacturer of the scale and/or the machine on which it is used.

RENISHAW

apply innovation[™]

System	Operation
Compensation	Specifications

Positioning of material sensor

CAUTION: To ensure thermal stabilisation, the material temperature sensor should be fixed to the material for 25 minutes before starting measurement.

When positioning the material temperature sensors, first decide on the primary objective for performing material expansion compensation. This is usually one of four possible objectives:

- 3. To estimate the linear positioning accuracy that would be obtained if the machine was operated in an ambient environment of 20 °C. This is often the objective during machine build, sign-off, commissioning or recalibration, and in most cases is the same as defined in a National or International Machine Acceptance Standard.
- 4. To perform a calibration in accordance with a National or International Machine Acceptance Standard.
- 5. To estimate the linear accuracy that the machine feedback system could achieve if the feedback system was at a temperature of 20 °C. This is useful for diagnosing faults in the feedback system.
- 6. To estimate the accuracy of parts that the machine will produce when those parts are returned to 20 °C for inspection. This is particularly important in the production of accurate non-ferrous parts in non-temperature-controlled environments, where machine feedback and workpiece expansion coefficients differ significantly.

The differences between these objectives are often significant, particularly if the machine position feedback system gets hot during machine operation (for example, a ballscrew), or if the workpiece expansion coefficient is significantly different from that of the position feedback system, for example, an aluminium workpiece with glass scale linear encoders.

The material temperature sensor supplied with the XC compensator has a strong magnetic base for 'clamping' to the machine under test. Ensure there is good thermal contact between the material temperature sensor and the material being measured.

Estimate accuracy of the machine if it was operated in 20 °C environment

Place the material temperature sensor(s) on the table of the machine or on some other large part of the machine structure that is not close to any sources of heat (such as motors, gearboxes, bearing housings, exhausts). Set the material expansion coefficient to that of the feedback system.

Calibration in accordance with National and International Standards

Consult the procedure defined in the chosen Standard for details of where to place the material sensor, the required expansion coefficient, and the required machine warm-up cycle. If a thermal drift test is also defined in the Standard, this must be included.

If the air and machine temperatures are significantly different, it is likely that there are significant temperature differences between material surface and core temperatures. Under these circumstances, care should be taken to position the material temperature sensors where they will measure the core temperature. The temperature can be measured at a number of points using up to three material sensors, and the compensation factor applied will be based on an average value.

It is not always necessary to position the material sensors on the ballscrew or feedback system.

Example:

If the material sensors are placed on (or very close to) a ballscrew, the laser readings will be compensated assuming a ballscrew operating temperature of 20 °C. However, even if the machine operating environment is 20 °C, the actual ballscrew operating temperature would be higher than 20 °C as a result of heat generated by machine operation.

For example, if a machine is being calibrated in an environment of 25 °C, the ballscrew is 5 °C warmer than ambient (30 °C) as a result of the heat generated by the operation of the screw and the motor. Positioning the material sensor(s) on the ballscrew in this situation will result in overcompensation.

Place the sensor(s) on a large part of the machine to ensure a temperature reading related to the average ambient temperature around the machine over the last few hours.

System	Operation
Compensation	Specifications

Estimate accuracy of machine feedback system if it was at 20 °C

This procedure is often used for diagnostic purposes; for example, if the machine has failed calibration against Objective 1 or 2 and the accuracy of the feedback system at 20 °C requires verification. The laser beam must be aligned as close to the axis of the feedback system as possible (to minimise Abbé offset error).

The material temperature sensor(s) must be placed on (or very near to) the feedback system and the expansion coefficient must be set to that of the feedback system. The temperature can be measured at a number of points using up to three material sensors.

Manufacture of parts which must be accurate at 20 °C

If a machine tool is always used to machine workpiece materials with a significantly different expansion coefficient to those of the feedback system (for example, aluminum alloys, carbon composites, ceramics) it may be beneficial to use the expansion coefficient of the workpiece and not the one of the machine feedback system. Although this will not give a calibration that represents the performance of the machine at 20 °C, it can improve the accuracy of the workpieces when they are returned to 20 °C for measurement.

The material temperature sensor(s) must be positioned to measure a temperature similar to that expected of the workpiece. This is often on the table of the machine, but other factors like the type of coolant system employed and the metal removal rates may need to be considered. Care should also be taken to perform this type of calibration under typical conditions, and it can only be truly effective if the temperature and expansion coefficients of the various workpieces are relatively consistent.

RENISHAW

apply innovation[™]

20.7 °C

1013.30 mbar

58

20.2 °C

19.6 °C

20.2 °C

20.0 °C

%RH

Automatic environmental compensation

Operation Specifications

Automatic environmental compensation combines laser wavelength compensation and material thermal expansion compensation. If calibration is being performed in an environment where the atmospheric conditions are likely to vary during the test, then automatic environmental compensation is strongly recommended.

To perform automatic compensation:

System

- Connect the air and material temperature sensors to the appropriate sockets in the side of the XC compensator. Refer to environmental sensors (on page 5) for more information.
- 2. Connect the XC compensator to the PC using the USB cable provided.
- In Capture, the XC device monitor panel will indicate that the XC compensator is available. Environmental compensation is performed automatically.

XC compensator readings are taken every 7 seconds, and are used to compensate the laser readings accordingly. Refer to **XC compensator update cycle** for more information.

To define the default environmental units, click 'More' > 'Settings' > 'Environmental units'.

CAUTION

Before starting any calibration run:

Make sure that the machine to be calibrated has been exercised sufficiently to warm up the drive and scale of the axis to be calibrated.

Ensure the correct value has been entered for the coefficient of thermal expansion by adjusting the material expansion compensation parameter.

XC compensator update cycle

Every 7 seconds, a reading is taken from one of the six environmental sensors and passes to the PC. With this reading, the environmental compensation factor is updated. The order in which the environmental sensor readings are taken is as follows: air temperature, relative humidity, air pressure and the three material temperature sensors.

Fixed material compensation

Certain machine applications may require the user to enter a fixed material temperature value for compensation; for example, a machine with built-in material sensor(s) and a cooling system to maintain the bed at a controlled temperature.

To use a fixed material temperature, open the CARTO Capture software, and go to the 'Define' tab.

Select 'Machine' and select 'Fixed material temperature'to enter the fixed temperature value.

Specifications

Introduction

This section, together with the weights and dimensions section, summarises the physical and operational specifications of the various components of the system.

Renishaw reserves the right as part of its policy of continued product improvement to change the appearance or specification of the product without notice.

System storage	
Storage temperature range	–25 °C to 70 °C
Storage humidity range	0% to 95% non-condensing
Storage pressure range	10 mbar to 1200 mbar

XC environmental compensation unit and sensors

Air temperature sensor measurement range	0 °C to 40 °C
Air temperature sensor measurement accuracy	±0.2 °C
Air pressure sensor measurement range	650 mbar to 1150 mbar
Air pressure sensor measurement accuracy	±1.0 mbar [#]
Relative humidity sensor measurement range	0% to 95% (non-condensing)
Relative sensor measurement humidity accuracy	±6%
Wavelength compensation accuracy	±0.5 ppm ^{†*}
Material temperature sensor measurement range	0 °C to 55 °C
Material temperature sensor measurement accuracy	±0.1 °C
Automatic compensation update interval	7 seconds
Individual sensor update interval	42 seconds
Recommended recalibration period	12 months
Outputs	USB 2 compliant
Power supply	Powered via USB Maximum current usage = 100 mA
 * XC compensator in a horizontal orientation [†]The accuracy values do not include the errors associreadings to a material temperature of 20 °C. 	ated with the normalisation of the

* k=2 (95% confidence) EA-4/02, ISO

Weights and dimensions

XC environmental compensation unit (dimensions in mm).

Description	Weight
XC-80 compensator	490 g
Air temperature sensor	48 g
Material temperature sensor	45 g

Part numbers

Part number (Group)	Includes	Part number (Individual)
A-9908-0510 XC-80 compensator kit	XC-80 compensator	N/A
	Material temperature sensor and cable	A-9908-0879
	Air temperature sensor and cable	A-9908-0879
	XC mounting plate	A-9908-0892
	USB cable	A-9908-0286

www.renishaw.com/xc80

📞 +44 (0) 1453 524524

uk@renishaw.com

© 2016–2022 Renishaw plc. All rights reserved. This document may not be copied or reproduced in whole or in part, or transferred to any other media or language by any means, without the prior written permission of Renishaw. RENISHAW® and the probe symbol are registered trade marks of Renishaw plc. Renishaw product names, designations and the mark 'apply innovation' are trade marks of Renishaw plc. Renishaw plc. Renishaw product names are trade marks of their respective owners. Renishaw plc. Registered in England and Wales. Company no: 1106260. Registered office: New Mills, Wotton-under-Edge, Glos, GL12 8JR, UK.

WHILE CONSIDERABLE EFFORT WAS MADE TO VERIFY THE ACCURACY OF THIS DOCUMENT AT PUBLICATION, ALL WARRANTIES, CONDITIONS, REPRESENTATIONS AND LIABILITY, HOWSOEVER ARISING, ARE EXCLUDED TO THE EXTENT PERMITTED BY LAW. RENISHAW RESERVES THE RIGHT TO MAKE CHANGES TO THIS DOCUMENT AND TO THE EQUIPMENT, AND/OR SOFTWARE AND THE SPECIFICATION DESCRIBED HEREIN WITHOUT OBLIGATION TO PROVIDE NOTICE OF SUCH CHANGES.

Part no.: F-9908-0294-01-E Issued: 10.2023

